algebra-group
defines an algebra group structure
Table Of Contents
Installation
With npm do
npm install algebra-group
Examples
All code in the examples below is intended to be contained into a single file.
Integer additive group
Create the Integer additive group.
const algebraGroup = require('algebra-group')
// Define identity element.
const zero = 0
// Define operators.
function isInteger (a) {
// NaN, Infinity and -Infinity are not allowed
return (typeof n === 'number') && isFinite(n) && (n % 1 === 0)
}
function integerEquality (a, b) { return a === b }
function addition (a, b) { return a + b }
function negation (a) { return -a }
// Create Integer additive group a.k.a (Z, +).
const Z = algebraGroup({
identity: zero,
contains: isInteger,
equality: integerEquality,
compositionLaw: addition,
inversion: negation
})
You get a group object with zero as identity and the following group operators:
- contains
- notContains
- equality
- disequality
- addition
- subtraction
- negation
Z.contains(2) // true
Z.contains(2.5) // false
Z.contains('xxx') // false
Z.notContains(false) // true
Z.notContains(Math.PI) // true
Z.contains(-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) // true
Z.contains(1, 2, 3, 4.5) // false, 4.5 is not an integer
Z.addition(1, 2) // 3
Z.addition(1, 2, 3, 4) // 10
Z.negation(5) // -5
Z.subtraction(5, 1) // 4
Z.subtraction(5, 1, 1, 1, 1, 1) // 0
Z.equality(Z.subtraction(2, 2), Z.zero) // true
R\{0}
multiplicative group
Consider R\{0}
, the set of Real numbers minus 0, with multiplication as composition law.
It is necessary to remove 0, otherwise there is an element which inverse does not belong to the group, which breaks group laws.
It makes sense to customize group props, which defaults to additive group naming.
function isRealAndNotZero (n) {
// NaN, Infinity and -Infinity are not allowed
return (typeof n === 'number') && (n !== 0) && isFinite(n)
}
function multiplication (a, b) { return a * b }
function inversion (a) { return 1 / a }
function realEquality (a, b) {
// Consider
//
// 0.1 + 0.2 === 0.3
//
// It evaluates to false. Actually the expression
//
// 0.1 + 0.2
//
// will return
//
// 0.30000000000000004
//
// Hence we need to approximate equality with an epsilon.
return Math.abs(a - b) < Number.EPSILON
}
// Create Real multiplicative group a.k.a (R, *).
const R = algebraGroup({
identity: 1,
contains: isRealAndNotZero,
equality: realEquality,
compositionLaw : multiplication,
inversion: inversion
}, {
compositionLaw: 'multiplication',
identity: 'one',
inverseCompositionLaw: 'division',
inversion: 'inversion'
})
You get a group object with one as identity and the following group operators:
- contains
- notContains
- equality
- disequality
- multiplication
- division
- inversion
R.contains(10) // true
R.contains(Math.PI, Math.E, 1.7, -100) // true
R.notContains(Infinity) // true
R.inversion(2) // 0.5
// 2 * 3 * 5 = 30 = 60 / 2
R.equality(R.multiplication(2, 3, 5), R.division(60, 2)) // true
R+
multiplicative group
Create the multiplicative group of positive real numbers (0,∞)
.
It is a well defined group, since
- it has an indentity
- it is close respect to its composition law
- for every element, its inverse belongs to the set
Let’s customize group props, with a shorter naming.
function isRealAndPositive (n) {
// NaN, Infinity are not allowed
return (typeof n === 'number') && (n > 0) && isFinite(n)
}
const Rp = algebraGroup({
identity: 1,
contains: isRealAndPositive,
equality: realEquality,
compositionLaw: multiplication,
inversion: inversion
}, {
compositionLaw: 'mul',
equality: 'eq',
disequality: 'ne',
identity: 'one',
inverseCompositionLaw: 'div',
inversion: 'inv'
})
You get a group object with one identity and the following group operators:
- contains
- notContains
- eq
- ne
- mul
- div
- inv
Rp.contains(Math.PI) // true
Rp.notContains(-1) // true
Rp.eq(Rp.inv(4), Rp.div(Rp.one, 4)) // true
Rp.mul(2, 4) // 8
API
algebraGroup(identity, operator)
- @param
{Object}
given identity and operators - @param
{*}
given.identity a.k.a. neutral element - @param
{Function}
given.contains - @param
{Function}
given.equality - @param
{Function}
given.compositionLaw - @param
{Function}
given.inversion - @param
{Object}
[naming] - @param
{String}
[naming.identity=zero] - @param
{String}
[naming.contains=contains] - @param
{String}
[naming.equality=equality] - @param
{String}
[naming.compositionLaw=addition] - @param
{String}
[naming.inversion=negation] - @param
{String}
[naming.inverseCompositionLaw=subtraction] - @param
{String}
[naming.notContains=notContains] - @returns
{Object}
groups
algebraGroup.errors
An object exposing the following errors:
- ArgumentIsNotInGroupError
- EqualityIsNotReflexiveError
- IdentityIsNotInGroupError
- IdentityIsNotNeutralError
const {
ArgumentIsNotInGroupError,
EqualityIsNotReflexiveError,
IdentityIsNotInGroupError,
IdentityIsNotNeutralError
} = algebraGroup.errors
You can then do something like this
try {
// Some code that could raise an error.
} catch (error) {
switch (error) {
case instanceof ArgumentIsNotInGroupError:
// Handle error
break
case instanceof IdentityIsNotInGroupError:
// Handle error
break
default: throw error
}
}
For example, the following snippets will throw the corresponding error.
ArgumentIsNotInGroupError
R.inversion(0) // 0 is not in group R\{0}
Rp.mul(1, -1) // -1 is not in R+
EqualityIsNotReflexiveError
algebraGroup({
identity: 1,
contains: isRealAndNotZero,
equality: function (a, b) { return a > b }, // not well defined
compositionLaw: multiplication,
inversion: inversion
})
IdentityIsNotInGroupError
algebraGroup({
identity: -1,
contains: isRealAndPositive,
equality: equality,
compositionLaw: multiplication,
inversion: inversion
})
IdentityIsNotNeutralError
algebraGroup({
identity: 2,
contains: isRealAndNotZero,
equality: equality,
compositionLaw: multiplication,
inversion: inversion
})