algebra-ring
defines an algebra ring structure
Installation | Example | API | License
Installation
With npm do
npm install algebra-ring
Example
All code in the examples below is intended to be contained into a single file.
Real
Create a ring structure over real numbers.
const ring = require('algebra-ring')
// Define operators.
function contains (a) {
// NaN, Infinity and -Infinity are not allowed
return (typeof a === 'number' && isFinite(a))
}
function equality (a, b) { return a === b }
function addition (a, b) { return a + b }
function negation (a) { return -a }
function multiplication (a, b) { return a * b }
function inversion (a) { return 1 / a }
// Create a ring by defining its identities and operators.
const R = ring([0, 1], {
equality: equality,
contains: contains,
addition: addition,
negation: negation,
multiplication: multiplication,
inversion: inversion
})
You get a Ring that is a Group with multiplication operator. The multiplication operator must be closed respect the underlying set; its inverse operator is division.
This is the list of ring operators:
- contains
- notContains
- equality
- disequality
- addition
- subtraction
- negation
- multiplication
- division
- inversion
The neutral element for addition and multiplication are, as usual, called zero and one respectively.
R.contains(10) // true
R.contains(-1, 0.5, Math.PI, 5) // true
R.notContains(Infinity) // true
R.addition(1, 2) // 3
R.addition(2, 3, 5, 7) // 17
R.equality(R.negation(2), -2) // true
R.subtraction(2, 3) // -1
R.multiplication(2, 5) // 10
R.multiplication(2, 2, 2, 2) // 16
R.equality(R.inversion(10), 0.1) // true
R.division(1, 2) // 0.5
R.equality(R.addition(2, R.zero), 2) // true
R.equality(R.subtraction(2, 2), R.zero) // true
R.equality(R.multiplication(2, R.one), 2) // true
R.equality(R.division(2, 2), R.one) // true
R.division(1, 0) // will complain
R.inversion(R.zero) // will complain too
Boolean
It is possible to create a ring over the booleans.
const Boole = ring([false, true], {
equality: (a, b) => (a === b),
contains: (a) => (typeof a === 'boolean'),
addition: (a, b) => (a || b),
negation: (a) => (a),
multiplication: (a, b) => (a && b),
inversion: (a) => (a)
})
There are only two elements, you know, true
and false
.
Boole.contains(true, false) // true
Check that false
is the neutral element of addition and true
is the
neutral element of multiplication.
Boole.addition(true, Boole.zero) // true
Boole.multiplication(true, Boole.one) // true
As usual, it is not allowed to divide by zero: the following code will throw.
Boole.division(true, false)
Boole.inversion(Bool.zero)
API
ring(identities, operator)
- @param
{Array}
identities - @param
{*}
identities[0] a.k.a zero - @param
{*}
identities1 a.k.a one - @param
{Object}
operator - @param
{Function}
operator.contains - @param
{Function}
operator.equality - @param
{Function}
operator.addition - @param
{Function}
operator.negation - @param
{Function}
operator.multiplication - @param
{Function}
operator.inversion - @returns
{Object}
ring
ring.error
An object exposing the following error messages:
- cannotDivideByZero
- doesNotContainIdentity
- identityIsNotNeutral